
1.  Introduction
Numerical weather prediction (NWP) requires two key components: a computational forecast model and an 
initialization method, both of which have been demonstrated to contribute approximately equally to the steady 
improvement in forecast skill over the past 40 years (Buizza et  al., 2005; Kalnay, 2002). We seek to replace 
the computational forecast model with a data-driven surrogate model and integrate these two key components. 
Weather forecast models typically push the boundaries of computational feasibility, even on the largest super-
computers in the world, with a drive toward increased grid resolutions and better resolved physical processes. 
The most sophisticated initialization methods require executing the forecast model many times, using iterative 
loops and ensembles of forecasts initialized from perturbed initial conditions. This creates a competing paradigm 
where computational resources must be balanced between model fidelity and initialization accuracy. As a result, 
the models serve as a major limiting factor in the development of new initialization methods.

The application of artificial intelligence and machine learning (AI/ML) methods in weather and climate is a 
rapidly growing activity. Boukabara et al. (2021) described multiple instances in which AI/ML is being developed 
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bottleneck in the initialization process. Here, it is shown that techniques from the fields of artificial intelligence 
and machine learning (AI/ML) can be used to produce simple surrogate models that provide sufficiently 
accurate approximations to replace the original costly model in the initialization phase. The resulting process is 
self-contained, and does not require any further utilization of the original computer model when making daily 
forecasts.

PENNY ET AL.

© 2022 The Authors. Journal of 
Advances in Modeling Earth Systems 
published by Wiley Periodicals LLC on 
behalf of American Geophysical Union.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Integrating Recurrent Neural Networks With Data 
Assimilation for Scalable Data-Driven State Estimation
S. G. Penny1,2 , T. A. Smith1,2 , T.-C. Chen1,2 , J. A. Platt3 , H.-Y. Lin1,2 , M. Goodliff1,2 , and 
H. D. I. Abarbanel3,4 

1Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder, Boulder, 
CO, USA, 2Physical Sciences Laboratory (PSL), National Oceanic and Atmospheric Administration (NOAA), Boulder, 
CO, USA, 3Department of Physics, University of California San Diego (UCSD), La Jolla, CA, USA, 4Scripps Institution of 
Oceanography (SIO), La Jolla, CA, USA

Key Points:
•	 �Recurrent neural networks (RNNs) 

can replace conventional forecast 
models, producing accurate ensemble 
forecast statistics and linearized 
dynamics

•	 �Data assimilation (DA) is compatible 
with RNNs by applying state 
estimation in the hidden state space 
using a modified observation operator

•	 �The integrated RNN-DA methods 
can be scaled to higher dimensions 
by applying domain localization 
techniques

Correspondence to:
S. G. Penny,
Steve.Penny@noaa.gov

Citation:
Penny, S. G., Smith, T. A., Chen, 
T.-C., Platt, J. A., Lin, H.-Y., Goodliff, 
M., & Abarbanel, H. D. I. (2022). 
Integrating recurrent neural networks 
with data assimilation for scalable 
data-driven state estimation. Journal of 
Advances in Modeling Earth Systems, 
14, e2021MS002843. https://doi.
org/10.1029/2021MS002843

Received 27 SEP 2021
Accepted 14 FEB 2022

Author Contributions:
Conceptualization: S. G. Penny
Formal analysis: H.-Y. Lin
Funding acquisition: S. G. Penny
Investigation: S. G. Penny, T. A. Smith, 
J. A. Platt
Methodology: S. G. Penny, J. A. Platt
Project Administration: S. G. Penny
Software: S. G. Penny, T. A. Smith, T.-C. 
Chen, J. A. Platt, H.-Y. Lin, M. Goodliff

10.1029/2021MS002843

Special Section:
Machine learning application to 
Earth system modeling

RESEARCH ARTICLE

1 of 25

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5223-8307
https://orcid.org/0000-0003-4463-6126
https://orcid.org/0000-0001-6300-5659
https://orcid.org/0000-0001-6579-6546
https://orcid.org/0000-0001-5731-2353
https://orcid.org/0000-0002-6841-1661
https://orcid.org/0000-0002-4690-6081
https://doi.org/10.1029/2021MS002843
https://doi.org/10.1029/2021MS002843
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1942-2466.MLAMODEL1
http://agupubs.onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)1942-2466.MLAMODEL1


Journal of Advances in Modeling Earth Systems

PENNY ET AL.

10.1029/2021MS002843

2 of 25

for target applications in operational NWP. An area of interest noted by Boukabara et al. (2021) is the synergy 
between AI/ML and data assimilation (DA). Abarbanel et al. (2018) described the deep connections between ML 
and DA, and in special cases mathematical equivalences (further details will be provided in an upcoming work 
(Abarbanel, 2022)). Bocquet et al. (2020) established an embedding of ML into DA using a Bayesian perspective 
and demonstrated numerically that the alternation of ML and DA as reported in Brajard et al. (2020) acts as a 
coordinate descent minimization for the defined loss function. Other recent approaches that have been applied 
to combine ML with DA include the application of a neural network design combined with a DA operation to 
train the network on noisy data (Bocquet et al., 2021; Brajard et al., 2020), the application of artificial neural 
networks for correcting errors in numerical model forecasts in the DA cycle (Bonavita & Laloyaux, 2020; Farchi 
et al., 2021), the use of a convolution neural network (CNN) to enforce conservation of mass in a DA procedure 
(Ruckstuhl et al., 2021), the development of a NN-based tangent linear and adjoint model for use in variational 
DA methods (Hatfield et  al.,  2021), an end-to-end application of a combined DA and model bias correction 
(Arcucci et al., 2021), and the application of DA in the reduced dimension latent space of an autoencoder (Peyron 
et al., 2021).

Here, we will focus on a simplified form of recurrent neural network (RNN), based on the reservoir computing 
(RC) paradigm (Jaeger, 2001) that can be used to replace the numerical model in the DA process. RC has been 
used to emulate dynamical systems ranging from simple chaotic models to global atmospheric models (Arco-
mano et al., 2020; Lu et al., 2017, 2018; Pathak et al., 2017, 2018). However, it has not been shown whether 
such models produce an accurate response to perturbations in initial conditions. Integrating a data-driven model 
with DA techniques requires accurate characterization of dynamical error growth. We will demonstrate that the 
RNN architecture can produce sufficiently accurate representations of such error growth to the degree that the 
RNN-based models can replace key components of foundational DA algorithms such as the ensemble Kalman 
filter (EnKF; Evensen, 1994) and the 4D variational method (4D-Var; Courtier et al., 1994; Courtier & Tala-
grand,  1987; Talagrand & Courtier,  1987). Such key components include forecast error covariance statistics 
derived from ensemble forecasts, and the tangent linear model and its adjoint.

We introduce a method to achieve this in a direct manner by applying DA to update the “hidden” or “reservoir” 
space of the RNN/RC dynamics (Figure 1). Results are shown assimilating both fully observed and sparsely 
observed dynamics, with a range of observation noise levels, using an RNN-based ensemble transform Kalman 
filter (ETKF; Bishop et al., 2001; Hunt et al., 2007) and an RNN-based strong constraint incremental 4D-Var 
(Courtier et al., 1994).

2.  Methods
The weather and climate communities regularly produce three primary categories of data: (a) observations of the 
Earth system, either drawn directly from in situ measurements or from satellite-based sensors, (b) simulations 
produced on regular gridded fields, generated from numerical models derived from basic principles of physics, 
and (c) retrospective analyses (reanalyzes), that attempt to optimally combine the previous two categories to 
produce historical reconstructions of the atmosphere or other components of the Earth system. All of these data 
sets have inherent weaknesses. Observations are generally sparse and irregular, can be indirect (e.g., integrated 
quantities like satellite radiance measurements), and can contain unpredictable errors. Numerical models have 
systematic errors that result from abstractions, approximations, and unresolved processes. Reanalysis products 
attempt to mitigate these weaknesses, but still inherit them to some degree. However, as these data sets have 
already been produced and archived, they are valuable resources that can be leveraged to develop data-driven 
methods.

We assume that for a realistic application either a long numerical model simulation or retrospective historical 
analysis is available as training data. Thus, we train the RNN to generate accurate predictions using a dedicated 
training data set that resolves all components of the target dynamics. For this study, we use the output from the 
model described in Section 2.4 to train our RNN models. We focus our attention on developing the capabilities 
to integrate the pretrained data-driven RNN model with an online DA process that repeatedly ingests new noisy 
and sparse observations, updates the state estimate of the system, and makes new short-term forecasts. This has 
applications ranging from operational NWP to the efficient reconstruction of historical Earth system states.
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2.1.  Network Design

Reservoir computing is a category of machine learning methods. It originated in the works of Jaeger (2001), who 
introduced Echo State Networks (ESN), and Maass et al. (2002) who introduced Liquid State Machines (LSM). 
Both methods assume that an input signal can be mapped to a fixed nonlinear system of higher dimension than 
the input. Such systems can be trained using a readout layer to map the state of the reservoir to the desired output. 
The result is a simple model that can reproduce the potentially complex dynamics of the original system. A survey 
is provided by Lukoševičius and Jaeger (2009), while Konkoli (2017) provides further discussion on the general-
ity of RC. Successful applications of RC have been demonstrated for the prediction of spatiotemporally chaotic 
dynamics (Chattopadhyay et al., 2020; Pathak et al., 2018; Platt et al., 2021), and in particular of geophysical fluid 
dynamics (Arcomano et al., 2020; Lin & Penny, 2021).

RNNs have long been used as a preferred ML method for cases in which temporal considerations are necessary. 
We use a basic RNN (Elman, 1990) with a simplified structure to produce a variant of the RC network. The RNN/
RC design is useful for prediction because the “hidden” or “reservoir” state s(ti) provides a short-term memory of 
the target system trajectory x(t) up to time ti. Assuming an accurate forecast can be made of the hidden/reservoir 
state s(ti+1) by a well-trained RNN, then that forecast can be mapped to the target system space to produce a fore-
cast x′(ti+1) of the true system state x(ti+1).

As highlighted by Schrauwen et al. (2007), Steil (2004) showed that the state-of-the-art learning rule for RNNs 
at the time had the same weight dynamics as the methods proposed by Jaeger (2001) and Maass et al. (2002). 
The Atiya and Parlos (2000) recurrent learning rule trains the output weights while the internal weights are only 
globally scaled up or down. Similarly, we classify the RNN model parameters as either “micro-scale” or “macro-
scale”. By “micro-scale” parameters, we refer to the individual matrix or vector elements. These are typically 
trained in an artificial neural network using backpropagation. By “macro-scale” parameters, we refer to weighting 
factors that scale all of the matrix or vector elements at once. We note that what we call “macro-scale” parameters 
were called “global parameters” by Lukoševičius (2012). The general form of our RNN is given as,

𝐬𝐬 (𝑡𝑡𝑖𝑖+1) = 𝐹𝐹 (𝐬𝐬 (𝑡𝑡𝑖𝑖) , 𝐱𝐱 (𝑡𝑡𝑖𝑖)) = 𝑙𝑙 ∗ 𝑓𝑓 (𝜌𝜌𝐖𝐖𝑟𝑟𝑟𝑟𝑟𝑟𝐬𝐬 (𝑡𝑡𝑖𝑖) + 𝜎𝜎𝐖𝐖𝑖𝑖𝑖𝑖𝐱𝐱 (𝑡𝑡𝑖𝑖)) + (1 − 𝑙𝑙) ∗ 𝐬𝐬 (𝑡𝑡𝑖𝑖) ,� (1)

Figure 1.  Data assimilation is applied to update the hidden/reservoir state space s(t). Observations y° are sampled from the 
nature state space x (N)(t), while the composition H ◦ Wout is used as an observation operator to map the hidden/reservoir state 
space to an equivalent representation that can be used to form the innovations d(t) = y°(t) − H ◦ Wout(s(t)) in the observation 
space.
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𝐱𝐱
′ (𝑡𝑡𝑖𝑖+1) = 𝐺𝐺 (𝐬𝐬 (𝑡𝑡𝑖𝑖+1)) = 𝐖𝐖𝑜𝑜𝑜𝑜𝑜𝑜 (𝐬𝐬 (𝑡𝑡𝑖𝑖+1)) ,� (2)

where x(ti) is the system state at time ti, provided from data, s(ti) is the hidden/reservoir state, and x′(ti+1) is the 
predicted system state at the next time ti+1. The parameter ρ determines the spectral radius of the reservoir adja-
cency matrix Wres, σ scales the input signal mapped to the reservoir space by Win. The parameter l is the "leak’ 
parameter that gates new information into the system, which can also be interpreted as a relaxation parameter. 
We will use f(⋅) ≡  tanh(⋅).

After training the RNN model parameters, we expect the predicted state x′(ti+1) to be close to the true system 
state x(ti+1). In a typical RNN, all parameters of the system described by Equations 1 and 2 are trained, usually by 
a gradient descent type optimization method. For RC, however, all model parameters in Equation 1 are assumed 
fixed. Equation 1 is then iterated to generate a time series s(t) of hidden/reservoir states that corresponds to the 
training data x(t). We will assume the “readout” operator Wout(⋅) in Equation 2 is linear, in which case we use the 
notation Wout.

The microscale parameters in Wout are trained (while the other parameters of our RNN are held fixed) by solving 
a regularized least squares equation using a loss function that targets forecasts that are one time step in the future 
(Jaeger, 2001). The corresponding loss function is,

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝐖𝐖𝑜𝑜𝑜𝑜𝑜𝑜) = ‖𝐖𝐖𝑜𝑜𝑜𝑜𝑜𝑜𝐒𝐒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝐗𝐗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑‖
2 + 𝛽𝛽‖𝐖𝐖𝑜𝑜𝑜𝑜𝑜𝑜‖

2,� (3)

where Sdata and Xdata are matrices that comprise the vector-valued states s(t) and x(t) for the entire training data 
set, ordered columnwise, and β is a Tikhonov regularization parameter.

To move closer toward the approach of the general RNN, in which all parameters are trained, we regard the 
scalars l, ρ, σ, and β as macroscale parameters subject to training as well. The matrix Wres is initialized with a 
spectral radius of 1 prior to training, but otherwise the values are assigned randomly using a uniform distribution 
centered at 0. For computational efficiency, Wres is assumed to be sparse (i.e., only 1% of entries are nonzero). 
The matrix Win is initialized using a uniform random distribution with values ranging from −1 to 1.

An extended forecast x f(t) is made with the RNN from time t0 to ti, for i > 0, by recursively replacing the input 
state with the RNN prediction initialized from the previous time. Defined inductively, commencing with x(t0),

�� (�1) = ���� ◦� (� (�0) , � (�0)) ,� (4)

�� (��) = ���� ◦�
(

� (��−1) , �� (��−1)
)

,� (5)

where ◦ is the function composition operator. We note that due to the nature of chaotic dynamical systems (with 
leading Lyapunov exponent greater than 0), any error in one step of this recursion will accumulate and result in 
exponential error growth over time.

The macroscale parameters are trained using a nonlinear Bayesian optimization method, which uses a surrogate 
model representation of the loss function (Ginsbourger et al., 2010; Jones et al., 1998). For this macroscale opti-
mization we use a loss function that targets longer-range prediction,

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

(
𝐱𝐱
𝑓𝑓 (𝑡𝑡)

)
=

𝑀𝑀∑

𝑖𝑖=1

𝑡𝑡𝑖𝑖+𝑁𝑁∑

𝑡𝑡=𝑡𝑡𝑖𝑖

‖𝐱𝐱𝑓𝑓 (𝑡𝑡) − 𝐱𝐱(𝑡𝑡)‖2exp

(

−
𝑡𝑡 − 𝑡𝑡𝑖𝑖

𝑡𝑡𝑖𝑖+𝑁𝑁 − 𝑡𝑡𝑖𝑖

)

,� (6)

where M represents the number of separate initial times [t1, t2, t3, …, tM] used to make independent forecasts, 
selected randomly without replacement from the training data set, and N represents the number of time steps used 
for each forecast. We apply an exponential scaling term in order to account for the exponential growth of errors 
that is typical of chaotic dynamics. This term gives the forecast errors in the earlier portion of the forecast more 
weight, as this period is more relevant for cycled DA applications. Griffith et al. (2019) similarly applied long 
forecasts at multiple initial times in a reservoir computing application to identify model parameters that resulted 
in the reconstruction of the full system attractor.

We note that in the context of reservoir computing these macroscale parameters are often named hyperparam-
eters, however, because they are trained here via optimization we do not consider them as such. Recall that by 
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definition a hyperparameter is any design decision that is set before the learning process begins, is generally 
tunable, and can directly affect how well a model trains. The qualified hyperparameters of this optimization are 
provided in Table A1 of Appendix A.

By computing the Jacobian of the forecast model defined by Equations 1, 2, 4, and 5 with respect to the hidden/
reservoir state, we can determine the linear propagator M of the reservoir dynamics from time ti to ti+1 as,

𝐖𝐖 = 𝜌𝜌𝐖𝐖𝑟𝑟𝑟𝑟𝑟𝑟 + 𝜎𝜎𝐖𝐖𝑖𝑖𝑖𝑖𝐖𝐖𝑜𝑜𝑜𝑜𝑜𝑜,� (7)

𝐌𝐌[𝑡𝑡𝑖𝑖+1 ,𝑡𝑡𝑖𝑖] (𝐬𝐬 (𝑡𝑡𝑖𝑖)) =
𝑑𝑑𝑑𝑑

𝑑𝑑𝐬𝐬
= 𝑙𝑙 ∗ diag

(
1 − tanh(𝐖𝐖𝐖𝐖 (𝑡𝑡𝑖𝑖))

2
)
𝐖𝐖 + (1 − 𝑙𝑙) ∗ 𝐈𝐈.� (8)

The linear propagator describes the evolution of small perturbations from a reference trajectory. It can be used 
in DA methods, in particular 4D-Var, where it is called the tangent linear model (TLM). Further, the Lyapunov 
exponents of the system are determined by integrating the linear propagator from time t = 0 → ∞ and comput-
ing the eigenvalues of the resulting system. Practical algorithms based on QR decomposition (Golub & Van 
Loan, 2012) are provided by Geist et al. (1990). For computational efficiency, we implement the TLM and its 
adjoint as linear operators to avoid matrix multiplications and allow for efficient matrix-vector operations applied 
within the iterative minimization schemes.

2.2.  Data Assimilation

Trevisan et al. (2010), Trevisan and Palatella (2011), Palatella et al. (2013), and Bocquet et al. (2017) showed that 
the number of observations needed to constrain any DA system is related to the number of non-negative Lyapu-
nov exponents in the system. Platt et al. (2021) indicated that reproducing the Lyapunov spectrum is critical to 
generating accurate predictions with reservoir computing models-with deviations from the true spectrum leading 
to significantly degraded forecast skill. Considering these points, we presume that even if the hidden/reservoir 
state space is large, if the RNN is trained to be sufficiently accurate such that the true Lyapunov spectrum is well 
approximated, then the number of observations required to constrain the hidden state space dynamics should be 
the same as is required to constrain the original system dynamics.

Following this presumption, we apply DA in the hidden/reservoir space of the RNN system, and apply the compo-
sition of an observation operator with the readout operator in order to compare hidden/reservoir states with obser-
vations of the original system. To test this approach, we apply two well-known DA algorithms integrated with the 
pretrained RNN forecast model-the ensemble transform Kalman filter (Bishop et al., 2001; Hunt et al., 2007) and 
the strong constraint incremental 4-dimensional variational method (4D-Var; Courtier et al., 1994).

From the perspective of operational forecasting, the RNN provides a simple and low-cost replacement for the 
production of essential information needed for the online DA cycle, such as forecast error covariance statistics 
and the tangent linear and adjoint model dynamics. From the machine learning perspective, the DA algorithms 
allow the RNN hidden/reservoir dynamics to be driven with a noisy and sparsely observed signal. We will show 
that in cases where the direct insertion of observations quickly corrupts the hidden/reservoir state and leads to 
inaccurate forecasts, the DA methods can produce valid reconstructions of the system state as well as viable initial 
conditions for short-term forecasts.

Kalnay et al. (2006) described the ideal initial ensemble perturbations as those that effectively span the space 
defined by the analysis error covariance. We use ensemble forecast statistics produced by the RNN model to 
generate dynamically estimated forecast error covariance statistics, and then apply an ETKF to assimilate noisy 
observations of the true system state and estimate the analysis error covariance. Bocquet and Carrassi (2017) 
showed that the minimum ensemble size required to constrain a (non-localized) deterministic ensemble filter 
such as the ETKF is equal to the number of non-negative Lyapunov exponents of the system dynamics. Thus, 
we expect that with a well-trained RNN that closely approximates the correct Lyapunov spectrum, the minimum 
number of ensemble members needed to constrain the ETKF will be the same as the number of members needed 
to constrain the original system.

We define a new modified observation operator by composing the conventional observation operator H(⋅), 
which maps from the system space to the observation space, with the readout operator Wout(⋅), which maps from 
the hidden/reservoir space to the system space (see Figure 1). Our implementation of the ETKF follows the 
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formulation of Hunt et al. (2007). Let 𝐴𝐴 𝒚̄𝒚
𝑏𝑏
= 𝐻𝐻

(
𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜

(
𝒔̄𝒔
𝑏𝑏
))

 , where 𝐴𝐴 𝒔̄𝒔
𝑏𝑏 is the background ensemble mean hidden/

reservoir state, and Y b = H(Wout(S b)), where the columns of S b are ensemble perturbations around the mean, then

𝑷̃𝑷
𝑎𝑎
=

[
𝑘𝑘 − 1

𝛾𝛾
𝐈𝐈 +

(
𝐘𝐘

𝑏𝑏
)𝑇𝑇
𝐑𝐑

−1
𝐘𝐘

𝑏𝑏

]−1

,� (9)

𝐖𝐖
𝑎𝑎 =

[
(𝑘𝑘 − 1)𝑷̃𝑷

𝑎𝑎] 1

2 ,� (10)

𝐒𝐒
𝑎𝑎
= 𝐒𝐒

𝑏𝑏
𝐖𝐖

𝑎𝑎,� (11)

𝒘̄𝒘
𝑎𝑎 = 𝑷̃𝑷

𝑎𝑎(
𝐘𝐘

𝑏𝑏
)𝑇𝑇
𝐑𝐑

−1
(
𝐲𝐲
𝑜𝑜 − 𝒚̄𝒚

𝑏𝑏
)
,� (12)

𝒔̄𝒔
𝑎𝑎
= 𝐒𝐒

𝑏𝑏
𝒘̄𝒘

𝑎𝑎
+ 𝒔̄𝒔

𝑏𝑏,� (13)

where R is the observation error covariance matrix, k is the ensemble dimension, γ is a multiplicative infla-
tion factor, 𝐴𝐴 𝑷̃𝑷

𝑎𝑎 is the analysis error covariance matrix represented in the ensemble perturbation subspace, W a is 
applied as a transform operator to map the background ensemble perturbations to analyze ensemble perturba-
tions, and 𝐴𝐴 𝒘̄𝒘

𝑎𝑎 determines the weighting coefficients of the column vectors S b, which are used as a linear basis to 
form the new ensemble mean analysis state vector 𝐴𝐴 𝒔̄𝒔

𝑎𝑎 . For reference, substituting Equation 12 into 13, and further 
substituting the equations provided above, the resulting Kalman gain matrix for the integrated RNN-ETKF is,

𝐊𝐊 = 𝐒𝐒
𝑏𝑏

[
𝑘𝑘 − 1

𝛾𝛾
𝐈𝐈 +

[
𝐻𝐻

(
𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜

(
𝐒𝐒
𝑏𝑏
))]𝑇𝑇

𝐑𝐑
−1
[
𝐻𝐻

(
𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜

(
𝐒𝐒
𝑏𝑏
))]

]−1[
𝐻𝐻

(
𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜

(
𝐒𝐒
𝑏𝑏
))]𝑇𝑇

𝐑𝐑
−1.� (14)

The control vector for 4D-Var can similarly be formed in the hidden/reservoir space. We use the strong 
constraint incremental 4D-Var, implemented using an outer and inner loop. In the outer loop, a nonlinear forecast 

𝐴𝐴 𝐬𝐬
𝑓𝑓

𝑡𝑡
= [𝑡𝑡𝑡0] (𝐬𝐬0) is generated over a short optimization period, called the analysis window. In the inner loop, the 

linearized dynamics are used to find an improved guess for the initial state s0 using an iterative linear solver, and 
then the outer loop is repeated. If we let 𝐴𝐴 𝐴𝐴𝐬𝐬0 =

(
𝐬𝐬0 − 𝐬𝐬

𝑓𝑓

0

)
 , 𝐴𝐴 𝐴𝐴𝐬𝐬𝑏𝑏

0
=
(
𝐬𝐬
𝑏𝑏

0
− 𝐬𝐬

𝑓𝑓

0

)
 , where 𝐴𝐴 𝐬𝐬

𝑏𝑏

0
 is the initial background state 

estimate, and 𝐴𝐴 𝐝𝐝𝑡𝑡 =
(
𝐲𝐲
𝑜𝑜
𝑡𝑡
−𝐻𝐻𝑡𝑡◦𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜

(
𝐬𝐬
𝑓𝑓

𝑡𝑡

))
 , then the objective function is,

𝐽𝐽 (𝛿𝛿𝐬𝐬0) = 𝐽𝐽𝑏𝑏 (𝛿𝛿𝐬𝐬0) + 𝐽𝐽𝑜𝑜 (𝛿𝛿𝐬𝐬0) ,� (15)

where,

𝐽𝐽𝑏𝑏 (𝛿𝛿𝐬𝐬0) =
1

2

(
𝛿𝛿𝐬𝐬0 − 𝛿𝛿𝐬𝐬𝑏𝑏

0

)𝑇𝑇
𝐁𝐁

−1
(
𝛿𝛿𝐬𝐬0 − 𝛿𝛿𝐬𝐬𝑏𝑏

0

)
,� (16)

𝐽𝐽𝑜𝑜 (𝛿𝛿𝐬𝐬0) =
1

2

𝑁𝑁𝑡𝑡∑

𝑡𝑡=0

(𝐝𝐝𝑡𝑡 −𝐻𝐻𝑡𝑡◦𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 (𝐌𝐌[𝑡𝑡𝑡0]𝛿𝛿𝐬𝐬0))
𝑇𝑇
𝐑𝐑

−1
𝑡𝑡 (𝐝𝐝𝑡𝑡 −𝐻𝐻𝑡𝑡◦𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 (𝐌𝐌[𝑡𝑡𝑡0]𝛿𝛿𝐬𝐬0)) ,� (17)

𝐌𝐌[0,0] = 𝐈𝐈,� (18)

𝐌𝐌[𝑡𝑡+1,𝑡𝑡] = 𝑙𝑙 ∗ diag
(
1 − tanh(𝐖𝐖𝐖𝐖(𝑡𝑡))

2
)
𝐖𝐖 + (1 − 𝑙𝑙) ∗ 𝐈𝐈,� (19)

as in Equation 8, and the initial condition in the original system space can be recovered by,

𝐱𝐱0 = 𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 (𝐬𝐬0) .� (20)

In our implementation, Ht(⋅) and Wout(⋅) are linear, so we now replace them with the matrix notations Ht and Wout. 
When such operators are not linear, a linear approximation via Taylor series expansion is typically applied. The 
minimum is found when the gradient with respect to the control vector δs0 equals 0,

∇𝛿𝛿𝐬𝐬0𝐽𝐽 = 𝐁𝐁
−1
(
𝛿𝛿𝐬𝐬0 − 𝛿𝛿𝐬𝐬𝑏𝑏

0

)
𝑁𝑁𝑡𝑡∑

𝑡𝑡=0

𝐌𝐌
𝑇𝑇

[𝑡𝑡𝑡0]
𝐇𝐇

𝑇𝑇
𝑡𝑡 𝐑𝐑

−1
𝑡𝑡 (𝐝𝐝𝑡𝑡 −𝐇𝐇𝑡𝑡𝐌𝐌[𝑡𝑡𝑡0]𝐖𝐖𝑜𝑜𝑜𝑜𝑜𝑜𝛿𝛿𝐬𝐬0) = 0.� (21)

We solve this by separating terms into the form ‘Ax = b’, where δs0 is the only unknown quantity,
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(

𝐈𝐈 + 𝐁𝐁

𝑁𝑁𝑡𝑡∑

𝑡𝑡=0

𝐇𝐇𝑡𝑡𝐌𝐌[𝑡𝑡𝑡0]

)

𝛿𝛿𝐬𝐬0 = 𝐁𝐁

𝑁𝑁𝑡𝑡∑

𝑡𝑡=0

𝐌𝐌
𝑇𝑇

[𝑡𝑡𝑡0]
𝐇𝐇

𝑇𝑇
𝑡𝑡 𝐑𝐑

−1
𝑡𝑡 𝐝𝐝𝑖𝑖 + 𝛿𝛿𝐬𝐬𝑏𝑏

0� (22)

and then applying the biconjugate gradient stabilized method (Van der Vorst, 1992). Alternative forms of Equa-
tion 22 are available, for example, making the ‘A’ matrix symmetric so that the conjugate gradient method can be 
applied. Returning to the outer loop, a new nonlinear forecast 𝐴𝐴 𝐬𝐬

𝑓𝑓
(𝑡𝑡) = [𝑡𝑡𝑡0]

(
𝐬𝐬
𝑓𝑓

0
+ 𝛿𝛿𝐬𝐬0

)
 is generated and the entire 

process is repeated with the goal of converging to the optimal nonlinear trajectory.

2.3.  Localization

For the RNN model itself, scalability is enabled by partitioning the model system domain into smaller local 
patches, with a separate RNN trained for each patch (Pathak et al., 2018). Each local patch is assigned a small 
radius of “halo” points that allow information from neighboring patches as inputs to the RNN model, while 
computing a forecast only for the points within the patch. This follows a similar paradigm to that used for the 
domain decomposition of general circulation models. Localization of a geophysical forecast model is motivated 
by the presence of locally low-dimensional chaotic dynamics (Oczkowski et al., 2005). In previous works, Arco-
mano et  al.  (2020) demonstrated the use of RC for the prediction of global scale atmospheric dynamics by 
applying the localization scheme described above, while Lin and Penny (2021) further showed that this spatial 
localization approach could be improved for geophysical systems by applying transformations into Fourier space.

Localization has also been an important tool for scaling DA methods to enable the application to high-dimen-
sional systems (Greybush et al., 2011). We apply localization of the DA using an approach similar to the Local 
Ensemble Transform Kalman Filter (LETKF; Hunt et al., 2007). In its original formulation, the LETKF computes 
a separate ETKF analysis at each model grid point, while only assimilating observations within a prescribed 
localization radius around that grid point. In our RNN-LETKF, we instead choose a radius around local patches. 
Observations are selected from an area larger than the patch itself based on the RNN localization in order to 
promote consistency with the analyses computed for neighboring patches. We maintain correspondence with the 
local RNN model architecture by using a radius that aligns with the input field of the local RNN, which includes 
the local patch and its halo points. As with the LETKF, the RNN-LETKF local analyses can be computed in 
parallel, after observation innovations are computed globally and distributed to each local patch. The results of 
the local analyses are then communicated to the neighboring patches in order to initialize the next forecast.

2.4.  Source Data for Training, Validation, and Testing

Here, we describe the underlying model equations that we use to generate data for training, validating, and test-
ing the RNN models. Lorenz (1996) developed a simple model (L96) that includes advection, dissipation, and 
external forcing to describe basic wavelike dynamics in the atmosphere around a latitude ring. The L96 model is 
a frequently used test system for DA studies (Abarbanel et al., 2010; Brajard et al., 2020; Chen & Kalnay, 2019; 
Goodliff et al., 2017; Penny, 2014, 2017), and multiple varieties of RNNs have been applied successfully for 
emulation of L96 dynamics (Vlachas et al., 2020). The L96 system is defined by a set of ordinary differential 
equations on a discrete finite cyclic domain,

𝑓𝑓𝐿𝐿96 (𝐱𝐱𝑖𝑖) =
𝑑𝑑𝐱𝐱𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝐱𝐱𝑖𝑖−1 (𝐱𝐱𝑖𝑖+1 − 𝐱𝐱𝑖𝑖−2) − 𝐱𝐱𝑖𝑖 + 𝐹𝐹𝐿𝐿96.� (23)

The domain can be of any size. We use two configurations, one that is 6-dimensional (L96-6D) and another that is 
40-dimensional (L96-40D). We use forcing FL96 = 8.0, which ensures fully developed chaotic dynamics, meaning 
that at least one Lypaunov exponent is greater than 0. This implies initial errors will grow exponentially on aver-
age. The model is integrated with a time step of δt = 0.01 model time units (MTUs) using scipy odeint, which is 
a wrapper for LSODA from the FORTRAN package odepack (Hindmarsh, 1983), and is based on an automatic 
selection method that chooses between the Adams method (for the nonstiff case) and the backward differentiation 
formula (BDF) method (for the stiff case) (Petzold, 1983). Lorenz (1996) scaled the coefficients of the model so 
that the error growth over 1 MTU is roughly equivalent to 5 days in the atmosphere, relative to the state-of-the-art 
atmospheric models of the time. In operational prediction centers, analyses are often produced with 6-hr, 12-hr, 
or 24-hr update cycles, thus we will focus on DA cycles ranging up to 0.2 MTU (≈24 hr).
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It is assumed that in practice one or more pre-computed numerical simulations or reanalysis data sets will be 
available for training the surrogate RNN models. To emulate this scenario, the training data are produced using a 
model integration of 100,000 time steps (200,000 for the L96-40D). This is produced after a spin-up integration 
of 20,000 time steps from an initial condition in which the first coordinate is set at x1(tinit) = 0.01 and the remain-
ing coordinates are set at xj(tinit) = 0.0, ∀j > 1. Following the target application described above, we assume data 
at all model grid points are available for training. Next, a transient integration is performed for 1,000 time steps. 
The test data are then produced using an additional integration of 100,000 time steps. Test results evaluating the 
prediction skill of the trained RNN models are shown in Figures A3, A4 and A5 in Appendix A. The transient 
integration is reserved as a validation data set for the RNN training. The DA experiments are conducted using 
the test data set.

2.5.  Experiment Design

Three RNN models are first trained and then used as surrogate models in the DA experiments. RNN model 1 and 
model 2 are trained and tested using the L96-6D data set, while model 3 is trained and tested using the L96-40D 
data set. Model 1 uses a larger hidden/reservoir state to improve accuracy, while model 2 uses a smaller hidden/
reservoir state to sacrifice accuracy for improved computational efficiency. Further details of the model design 
and training are provided in Appendix A.

We compare results using a variety of DA configurations. All forecast model integrations are computed with a 
time step of δt = 0.01. Unless otherwise noted, we use the following parameter settings: each DA experiment 
is integrated for 100 MTU (or 10,000 time steps); we use observation noise of σnoise = 0.5 and a corresponding 
estimated observation error of σobs = 0.5 to form R; observations are sampled every τobs = 0.02 MTU (≈2.4 hr); 
and we use an analysis cycle window of τda = 0.2 MTU (≈24 hr).

We use a 10-member ensemble for the RNN-ETKF applied to the L96-6D data set, a 30-member ensemble for the 
RNN-LETKF applied to the L96-40D data set, and for the purposes of this discussion a 1-member “ensemble” 
for the RNN-4DVar applied to the L96-6D data set. All DA experiments are initialized by first preparing a set 
of perturbed spin-up data sets, one for each ensemble member, applying Gaussian random noise with standard 
deviation σinit = 0.5 to the true state over a 1,000 time step window (2,000 for the L96-40D system). Each RNN 
ensemble member is synchronized with its corresponding perturbed data set in order to produce an initial ensem-
ble of hidden/reservoir states that reflect the uncertainty present in the noisy input data.

As noted by Lorenc (2003), additional covariance inflation is needed in the presence of model error if that error 
is not addressed explicitly. Covariance inflation is also typically needed due to the use of a finite ensemble size. 
We found an inflation parameter of 1%–5% (i.e., γ = 1.01–1.05) to be effective for the ETKF when applied with 
the “perfect” numerical model. To account for model error in the RNN, we increase the multiplicative inflation 
parameter to 20% (γ = 1.2) for the RNN-ETKF and 30% (γ = 1.3) for the RNN-LETKF. Lorenc and Jardak (2018) 
note the importance of the background error covariance matrix used by 4D-Var. The canonical 4D-Var uses a 
static climatological background error covariance matrix Bx. Here, Bx is derived using a time average of the 
dynamic ETKF estimates, rescaled so that the mean on the diagonal has variance equal to 𝐴𝐴 𝐴𝐴2

𝑏𝑏
= 𝜎𝜎2

𝑜𝑜𝑜𝑜𝑜𝑜
= 0.25 . It 

uses an analysis time at the start of the window, and uses 2 outer loops. For the RNN-4DVar, we apply the follow-
ing transformation applied to the background error covariance Bx to map to the hidden/reservoir space,

𝐁𝐁𝑠𝑠 = 𝐖𝐖𝑖𝑖𝑖𝑖𝐁𝐁𝑥𝑥𝐖𝐖
𝑇𝑇
𝑖𝑖𝑖𝑖.� (24)

To mimic a realistic scenario of geophysical prediction, we focus mainly on cases where the variables are sparsely 
observed. If not otherwise stated, the L96-6D model is observed only at the first, second, and fourth nodes. For 
the L96-40D model, we limit the observing network to only 15 nodes.

3.  Results
3.1.  Assessment of Error Growth Rates

An essential consideration of DA is the behavior of long- and short-term error growth, which can be characterized 
by the Lyapunov exponent (LE) spectrum and finite-time (also known as “local”) Lyapunov exponents (FTLEs; 
Abarbanel, 1996; Abarbanel et al., 1992). If one considers DA as the synchronization of a model with the natural 
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process from which measurements are drawn, then the conditional LE spectrum of this coupled model-nature 
system must be driven negative to ensure the model synchronizes with the observed system (Penny, 2017). Previ-
ous studies (Griffith et al., 2019; Pathak et al., 2018; Platt et al., 2021) have already shown that reservoir comput-
ing can be used to reproduce the Lyapunov spectrum of the source system. Brajard et al. (2020) and Bocquet 
et al.  (2020) also showed this capability with alternative ML methods. The Lyapunov spectrum characterizes 
the long time average exponential growth rates of small errors in the system trajectory. However, at very short 
timescales, we find that the error growth rates of our trained RNNs are not well representative of the error growth 
rates produced by the source system dynamics. We find instead that the FTLEs of the RNN dynamics converge 
toward the Lyapunov exponents of the source system dynamics over a transient period of a few Lyapunov times-
cales (Figure 2).

To examine error growth rates, we also examine the forecast error covariance matrices approximated by an 
ensemble forecast, and compare it to the climatological (i.e., time-averaged) forecast error covariance. Assuming 
the forecast error covariance matrix is estimated as,

𝐏𝐏𝑡𝑡 =
1

𝑘𝑘 − 1
𝐗𝐗

𝑓𝑓

𝑡𝑡

(
𝐗𝐗

𝑓𝑓

𝑡𝑡

)𝑇𝑇
� (25)

where the columns of 𝐴𝐴 𝐗𝐗
𝑓𝑓

𝑡𝑡
 are perturbations around the forecast ensemble mean at time t, then the forecast error 

correlation matrix Ct rescales Pt between [0,1] as,

𝐂𝐂𝑡𝑡 = diag(𝝈𝝈𝑡𝑡)
−1
𝐏𝐏𝑡𝑡diag(𝝈𝝈𝑡𝑡)

−1
,� (26)

where 𝐴𝐴 𝝈𝝈𝑡𝑡 =
√
diag (𝐏𝐏𝑡𝑡) is a vector of standard deviations that correspond to the diagonal elements of Pt. While the 

growth rates of errors in the RNN models take some time to converge to the true growth rates, the forecast error 
correlations appear to be estimated relatively accurately at short lead times (an example is shown in Figure 3). 
This indicates that while it may be desirable to improve the convergence rates of the FTLEs produced by the 
RNN, the effect can be compensated for by using a scalar multiplicative inflation applied to the forecast error 
covariance matrix. This multiplicative inflation will be used below in the context of ensemble-based DA.

3.2.  Control RNN Case

To demonstrate the need for DA, we commence our cycled forecast experiments with a control case that sets 
a baseline for the performance of the RNN without using DA. Here, observations are inserted directly into the 

Figure 2.  Convergence of the leading finite-time Lyapunov exponents (λ1) for a trained RNN (model 1 in Table A2) averaged 
over 100 initial conditions of the L96-6D system. As the recurrent neutral networks (RNN) is integrated for longer periods of 
time, the error growth rates generated by the RNN model become more accurate. However, over the same period there is an 
exponential growth of errors in initial conditions.
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RNN as components of the vector x(ti) in Equation 1. For the sparse observing case, only the components that are 
observed are replaced, while the remaining components are predicted by the RNN.

Lu et al. (2017) examined a “sparse in space” case that limited the forcing of an RC model to only a subset of 
inputs. Their results showed that synchronization of the full state can be achieved even when observing only a 
subset of the variables of the system. However, we find that this type of direct insertion method for synchroni-
zation fails as the observations become more sparse in time (see Figure 4 and the middle and bottom rows of 
Figure 5).

Before further evaluating the RNN, we first consider for reference the case of direct insertion of observations into 
the original L96-6D numerical model, using the update equation,

𝐱𝐱
𝑎𝑎 = 𝐱𝐱

𝑏𝑏 +𝐇𝐇
𝑇𝑇
(
𝐲𝐲
𝑜𝑜 −𝐇𝐇𝐇𝐇

𝑏𝑏
)
.� (27)

As should be expected, providing perfect observations of all variables at every model time step (δt  =  0.01) 
produces exact synchronization between the driver signal and the numerical model trajectory. Increasing the 
time step between observations as high as 0.2 MTU does not significantly degrade the state estimates, with 
errors peaking at 2.5e−7. Increasing the observational noise generally increases the error in the state estimates 
by a similar magnitude. When the number of observed variables is reduced (e.g., to 3 or 2 out of 6), the system 
experiences transient synchronization with occasional bursting. While still using perfect observations, combining 
reduced observations (e.g., 50%) and using longer time steps (e.g., δt = 0.1) actually improves stability compared 
to using a time step of δt = 0.01 and leads to synchronization. However, when observation noise is added to this 
combination of sparseness in space and time, the bursting phenomena return, particularly in the unobserved vari-
ables (e.g., see top row of Figure 5).

The situation is quite different with the RNN model. Increasing the time step between the (noise-free) obser-
vations significantly degrades the RNN estimates, first adding high frequency oscillations (e.g., with δt = 0.02 
to δt  =  0.1), and then leading to trajectories with little discernible connection to the L96 dynamics (e.g., at 
δt = 0.2). Recall that for these experiments the RNN is trained on data that have a temporal resolution matching 

Figure 3.  (Top) RMSE of the forecast error correlation matrix over time for the L96-6D system, comparing an example recurrent neutral networks (RNN) ensemble 
forecast (blue) to the climatological error correlation matrix (orange), both evaluated versus a 100-member ensemble forecast using the perfect reference model. The 
initial conditions are sampled from the test data set, and initial ensemble perturbations are generated using a Gaussian distribution with standard deviation 0.1. (Bottom) 
Forecast error correlation matrix for the reference perfect numerical model and the RNN model over the same forecast period, valid at times 0.0, 0.2, 0.4, 0.6, 0.8, and 
1.0. The color scale ranges from 0 to 1.
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the underlying model time step δt = 0.01. Reducing the frequency of the input driving signal allows the hidden/
reservoir state to drift. Observing frequently (δt = 0.01) but removing the observation of one variable degrades 
the estimates of that variable without noticeably affecting the rest, while removing the observation of more than 
one variable can cause occasional degradation of the remaining observed variables. Due to the presence of the 
hidden/reservoir state, which maintains a memory of the past trajectory, the RNN itself is relatively insensitive to 
the introduction of noise to the observations. When observing the full system state, noisy observations supplied 
as driving data to the RNN simply increase high frequency noise in the analyzed state estimate, without resulting 
in divergence between the RNN and the true signal. Combining any of these constraints on the RNN appears to 
have additive effects. A comparison of the errors in the RNN using direct insertion with a range of observation 
noise and observing frequency (of which Figure 4 is one instance) is shown in Figure 5.

We note that even for this simple L96 model, the total set of direct insertion experiments using RNN model 1 was 
about 10% faster, and RNN model 2 about 30%–40% faster, than the total set of direct insertion experiments using 
the conventional numerical integration of the L96 differential Equation 23. We do not claim that these results can 
be easily extrapolated to other applications. However, we do emphasize that the projection of the system dynam-
ics to the higher dimensional hidden/reservoir state does not necessarily imply that the computations become 
more costly.

To summarize-simply providing the sparse and noisy observation data directly to the RNN is not adequate for 
initializing forecasts, which provides motivation for the use of a more sophisticated DA strategy.

3.3.  RNN-DA With Sparsely Observed Dynamics

DA methods provide most of their value when observations are sparse and noisy. Here, we restrict the observing 
network to only the first, second, and fourth nodes of the 6-dimensional cyclic L96 system (L96-6D). This leaves 
two patches that are unobserved for the duration of each experiment - the third node and the combined fifth and 
sixth nodes. We noticed no qualitative differences in other configurations of the observing system layout at the 
same 50% coverage level.

We first implement the RNN-ETKF and compare it to the conventional ETKF using the “perfect” numerical model. 
We find that with the exception of the case in which analyses are updated frequently (τDA = τobs = δt = 0.01), the 

Figure 4.  Direct insertion using the RNN with perfect (σnoise = 0) observations of the system at points (1, 2, and 4), sampled with τobs = 0.05 (≈6 hr), which is every 5 
model time steps. The RNN alone cannot successfully recover the true trajectory when observations are sparse and noisy. This figure provides a corresponding entry in 
Figure 5.
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Figure 5.  Normalized RMSE using direct insertion using (Top) the ‘perfect’ numerical model (Middle) RNN model 2, and (Bottom) RNN model 1. Each is applied to 
the L96-6D system integrated over 100 MTU, varying the observation noise σnoise and the observation time step τobs. (Left) RMSE of observed points (indexes 1, 2, and 
4). (Right) RMSE of points that are not observed (indexes 3, 5, and 6). A normalized RMSE of 1.0 equals the L96 system's climatological standard deviation. Note that 
the conventional model is more sensitive to increased noise, while the RNN model is more sensitive to the observing frequency.
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RNN-ETKF using both RNN models 1 and 2 performs quite well in comparison (Figures 6 and 7). We note that 
the total set of ETKF experiments using RNN model 1 had about equal run time, while RNN model 2 was about 
25% faster, compared to the run time of the total set of ETKF experiments using the conventional numerical 
integration of the L96 differential Equation 23, noting again the RNN form does not necessarily imply higher 
computational cost.

The RNN-4DVar method performs well when the observation noise is small, but is sensitive to increasingly 
sparse and noisy observing sets (Figures 8 and 9). As the underlying RNN model is improved (from model 2 to 
model 1 in Table A2), this appears to improve the performance of the 4D-Var correspondingly. The sensitivity of 
the RNN-4DVar to observation noise may be exacerbated by errors in the RNN model equations from which the 
TLM and adjoint operators are derived, and also the approximated background error covariance matrix. A further 
drawback is that the experiments using the RNN-4DVar required 1–2 orders of magnitude more computational 
time than the conventional 4D-Var applied using the numerical integration of the L96 differential Equation 23 
and its TLM and adjoint equations.

The difference between FTLEs estimated by the RNN and the numerical model at short lead times indicates that 
the linearized dynamics (i.e., the TLM and adjoint) are not well represented at these timescales. The RNN models 
used here generally underrepresent the magnitude of error growth at short timescales. This affects the ETKF 
as well but is alleviated by the application of multiplicative inflation, and gives some explanation for why the 
ETKF is more stable than 4D-Var. The strong-constraint 4D-Var used here assumes a "perfect’ model. We expect 
that transitioning from the strong-constraint 4D-Var formulation to the weak-constraint 4D-Var approach should 
further improve the RNN-4DVar performance, as the latter explicitly accounts for errors in the model.

3.4.  Scaling RNN-DA to Higher Dimensions

Next we demonstrate that the components of the RNN-DA system can scale as the system size increases. Given 
the results of the previous section, we will focus on the RNN-ETKF. We increase the dimension of the L96 
system from 6 to 40 in order to demonstrate the scalability of the system via the aforementioned localization 
scheme. The system is partitioned into 20 local subgroups of 2 points each, and a separate RNN is trained for each 
local subgroup. The input signal to each RNN is made up of the 2 points in its associated local subgroup, plus 
4 neighboring points on either side, giving each RNN an input dimension of 10 and an output dimension of 2. 

Figure 6.  The RNN-ETKF, assimilating observations at only three points (1, 2, and 4) at increments of τobs = 0.2 (i.e., every 20 model time steps), converges to the true 
system trajectory within a few time steps. Note the true and estimated trajectories are nearly indistinguishable. This figure provides a corresponding entry in Figure 7.
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Figure 7.
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For each local subgroup, observations are assimilated if they are located within the range of the local RNN input 
domain. In this example we observe 15 nodes of the system, leaving 25 nodes unobserved.

The Normalized Root Square Error (NRSE) of the trajectory estimated by the RNN-LETKF is shown in Figure 10 
using observation noise σnoise = 0.5, and in Figure 11 with reduced observation noise σnoise = 0.1. An additional 
perturbation is added at the first time step to ensure that the background estimate of the system state is far from 
truth. After roughly 20 MTU, the cycled DA system converges and provides an accurate estimation of the system 
trajectory. The lower panels in Figures 10 and 11 show the Normalized Root Mean Square Error (NRMSE) of the 
observed and unobserved nodes of the L96-40D system separately. The RNN-LETKF system appears to provide 
an accurate transfer of information from the observed to the unobserved variables.

Compared to the L96-6D system, the L96-40D system required the use of a larger hidden/reservoir dimension in 
order to generate accurate predictions. Specifically, here we used a 6,000 (2,000) dimensional reservoir during 
prediction (training), compared to 1,200 and 800 for Models 1 and 2, respectively. However, we note that the 
larger reservoir is chosen to compensate for the larger input signal dimension (which here is 10D for each of the 
20 reservoirs) not the overall increase in the global state space dimension. Applying the RNN-LETKF algorithm 
to higher dimensional systems can therefore be achieved by increasing the number of reservoirs, which require 
minimal communication between neighboring groups.

Finally, we note that predictions for the L96-40D system required a larger training data set of 200,000 time 
steps, and a longer spin-up time of 2,000 time steps, see details in Table A2 (Appendix A). With the localization 
scheme employed, training for the microscale parameters is completely independent for each subgroup, and is 
easily parallelized. Additionally, with much longer training data sets, the training of the microscale parameters 
can easily be applied in batches with equivalent results, with the macroscale parameters estimated from a sample 
of batches.

Figure 7.  Normalized RMSE of (Top) conventional ensemble transform Kalman filter (ETKF) using the “perfect” numerical model, (Middle) the RNN-ETKF using 
recurremt meural networks (RNN) model 2 (hidden/reservoir dimension 800), and (Bottom) the RNN-ETKF using RNN model 1 (hidden/reservoir dimension 1,600). 
All are applied to the L96-6D system integrated over 100 MTU, varying the observation noise σnoise and the observation time step τobs. The analysis cycle is adjusted 
for each case so that τDA = τobs. (Left) RMSE of observed points (indexes 1, 2, and 4). (Right) RMSE of points that are not observed (indexes 3, 5, and 6). Notably, the 
RNN-ETKF outperforms the conventional ETKF (which uses the perfect model) when both the observation noise and observing time step are large.

Figure 8.  The RNN-4DVar, assimilating observations at only three points (1, 2, and 4) at increments of τobs = 0.02 (i.e., every 2 model time steps), with observation 
noise set to σnoise = 0. The analysis cycle is τobs = 0.2 (i.e., every 20 model time steps). This figure provides a corresponding entry in Figure 9.
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Figure 9.  Normalized RMSE of (Top) conventional 4D-Var using the “perfect” numerical model, (Middle) the RNN-4DVar 
using RNN model 2 (hidden/reservoir dimension 800), and (Bottom) the RNN-4DVar using RNN model 1 (hidden/reservoir 
dimension 1,600). All are applied using an analysis cycle of τDA = 0.2 (i.e., every 20 model time steps). The RNN-4DVar 
performs best with frequent observations and relatively low observation noise, but otherwise has degraded performance.
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Figure 10.  Normalized error of the RNN-LETKF based state estimation for the L96-40D system using RNN Model 3. (Top) Normalized Root Square Error (NRSE) 
shown for each node of the L96 system (y-axis). (Bottom) NRMSE computed separately for the observed and unobserved nodes of the Lorenz system, with 15 nodes 
of the system observed. Note the y-axis is logarithmic in the lower plot. The error in both plots are normalized by the temporal standard deviation of the true trajectory. 
The RNN-LETKF uses a 30 member ensemble, with σobs = σnoise = 0.5, and macroscale parameters indicated by RNN model 3 in Table A2. The observed nodes of the 
system are [0, 3, 5, 8, 10, 14, 16, 19, 20, 25, 27, 30, 34, 36, 39].

Figure 11.  As in Figure 10, but with σnoise = 0.1.
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4.  Conclusions
One of the most common procedures in the field of data assimilation (DA) is to combine a computational model 
with observations to estimate the state of a partially observed system. This procedure is used for applications such 
as initializing models to make real-time forecasts or creating historical reconstructions based on a limited archive 
of observation data. An essential element of modern DA algorithms is the expectation that the forecast model 
responds accurately to small perturbations in the initial conditions. By integrating recurrent neural networks 
(RNN) with the ensemble Kalman filter and 4D-Variational DA methods, we have demonstrated that RNNs can 
produce reasonable representations of the system response to uncertainty in initial conditions. Critical to this 
demonstration was the assimilation of sparse observation data, which requires sufficiently accurate ensemble 
forecast error covariance statistics and tangent linear model dynamics to propagate information from observed to 
unobserved variables.

Comparing the application of a DA method using RNN-based forecast models to the same DA method using a 
“perfect” model provides a useful analogue to the real-world scenario in which an imperfect numerical model is 
used to estimate the true state of a natural system. Beyond the practical applications that a ML model may have, 
there is also much to be learned from determining the necessary elements for ML models to be used in applica-
tions like reanalysis and operational numerical weather prediction. One example provided was the reproduction 
of the finite-time Lyapunov exponents (FTLEs).

We note that while the RNN-DA methods have been applied to training data generated from a known model, 
as long as adequate training data exists the methods apply equally to systems for which no known theoretical 
or computational model is available. Further, the RNN-4DVar can be produced for models in which the tangent 
linear and adjoint models are either not available or are too difficult to calculate. The RNN-4DVar could easily be 
implemented in hybrid forms in which a conventional numerical model is used for the outer loop and RNN-based 
tangent linear model is used for the inner loop, or alternatively the RNN could be used as the nonlinear model in 
the outer loop to reduce computational costs while still using a numerical tangent linear model and adjoint in the 
inner loop. We also note that while the RNN models were trained once on historical data and held fixed during the 
RNN-DA cycling, online retraining of the RNN model can be performed during the DA cycle, e.g. as suggested 
by Brajard et al. (2020) and later explored by Bocquet et al. (2021) and Farchi et al. (2021). For the RNN used 
here, it is straightforward to perform continued online training using low rank matrix updates to update the linear 
readout operator Wout.

Combining the localization schemes for the RC architecture (Pathak et al., 2018) and ETKF (Hunt et al., 2007) 
produces a data-driven forecast system that can scale to high-dimensional problems. With this approach, commu-
nication is required between neighboring patches only during the prediction phase and during the DA cycle. The 
main design decision when scaling to high dimensional problems is determining the input dimension for each 
local group's reservoir, as the reservoir size must increase accordingly. The RC architecture used by Arcomano 
et  al.  (2020) to make predictions of the global atmospheric state use a reservoir size of 9,000 for each local 
132-dimensional state vector, suggesting that this increase is tractable for realistic applications. However, we 
consider the development of an optimized RNN architecture that can minimize the reservoir size an important 
activity for future work.

Further methods are needed to optimize the design and training of the ML model used in this study to replace the 
numerical forecast model. More development is needed in ML modeling of chaotic dynamics to ensure a rapid 
convergence of the finite time Lyapunov exponents toward the true values. While a simplified RNN resembling 
the reservoir computing approach was applied here, we expect that our approach could be applied with more 
sophisticated types of RNN that also use hidden state representations, such as Long Short Term Memory or Gated 
Recurrent Unit architectures.

Appendix A:  Details of the RNN Training
Bayesian optimization is an optimization technique that “minimizes the expected deviation from the extremum” 
of a target loss function Močkus (1975). The technique is useful mainly for global optimization of expensive 
nonlinear functions for which no gradient is computed. The specific algorithm used here is the efficient global 
optimization algorithm described by Jones et al. (1998) and implemented by Bouhlel et al. (2019), using a Kriging 



Journal of Advances in Modeling Earth Systems

PENNY ET AL.

10.1029/2021MS002843

19 of 25

surrogate model. In short, the algorithm starts by sampling a number of initial points over the search space. It then 
fits a Gaussian process regression across those points, enabling interpolation and extrapolation. After the fit, the 
algorithm computes the “expected improvement” of searching a new region of the space and then chooses points 
based on maximizing this criterion.

The loss function chosen is based on computing the scaled mean squared error (MSE) of long-range predictions 
over the test data set, as described by Equation 6. Hyperparameters of this optimization are shown in Table A1, 
and include the length of the training data for the RC, the number of forecasts in the validation set, and the length 
of those forecasts over which the MSE is computed. The following options for the Bayesian optimization algo-
rithm are kept fixed: the number of iterations of the algorithm (15), the number of parallel samples computed (4), 
and the number of optimization start points (100).

All RNNs here use a sparsity of 99% (density of 1%) for the reservoir adjacency matrix Wres. For L96-6D experi-
ments, we use the following hyperparameters for the Bayesian optimization: M = 100 initial points for validation 
forecasts, chosen randomly without replacement; a forecast length of 10.0 MTU, or N = 1,000, equal to ≈10 
Lyapunov timescales. The macroscale parameters learned from the Bayesian optimization process are provided 
in Table (A2).

The Bayesian optimization algorithm is computationally intensive for Model 3, as each iteration of the algo-
rithm requires training the microscale parameters for 20 localized RC models and evaluating their forecast skill. 
Lukoševičius (2012) suggested that using a reduced reservoir size while searching for optimal hyperparameters 
is an effective means to reduce computational costs. Vlachas et al. (2020) also showed that increasing the reser-
voir size for a localized RC model trained on the L96 system with fixed macroscale parameters simply increases 
the valid prediction time. Thus, to make the training of Model 3 more tractable, we use a reduced reservoir size 
within the Bayesian optimization algorithm to identify the best-performing macroscale parameters (Table A2). 
We use a hidden/reservoir dimension of 2,000 during the optimization, while for all Model 3 forecasts used in 
DA experiments and statistical tests we use the larger hidden/reservoir dimension of 6,000 (Figures 10 and 11, 
and Figure A5).

Hyperparameter RNN model 1 RNN model 2 RNN model 3

hidden/reservoir dimension 1,600 800 2,000 (6,000)

size of training set 100,000 100,000 200,000

number of long forecasts (M) 100 100 100

length of long forecasts (N) in MTU 10.0 10.0 10.0

sparsity of reservoir matrix 99% 99% 99%

input weighting (σ) limits [0.001, 1.0] [0.001, 1.0] [0.001,1.0]

leak rate (l) limits [0.001, 1.0] [0.001, 1.0] [0.001, 1.0]

spectral radius (ρ) limits [0.1, 1.5] [0.1, 1.5] [0.1, 1.5]

Tikhonov parameter (log β) limits [log(1e−8), log(1.0)] [log(1e−8), log(1.0)] [log(1e−8), log(1.0)]

Table A1 
Hyperparameters Used for the Bayesian Optimization. For Model 3, We Perform the Optimization Using a Reduced 
Reservoir Size (2,000) due to the Computational Cost of the Algorithm. Predictions are Made With a Larger Reservoir 
(6,000), See Text for Details
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Trained Parameter RNN model 1 RNN model 2 RNN model 3

       

spectral radius (ρ) 0.10036271 0.10000000 0.34378377

input weighting (σ) 0.06627321 0.05343709 0.05219330

leak parameter (l) 0.70270733 0.69460913 0.40813549

Tikhonov parameter (β) exp(−18.41726026) exp(−14.33030495) exp(−12.53138825)

Table A2 
Trained Values of the Macroscale Parameters for the RNNs Used as Forecast Models by the Data Assimilation Algorithms

A visualization of the macro loss function landscape in the (σ, ρ) plane is shown in Figure A1 based on RNN 
forecasts of the 6-dimensional Lorenz 96 model (described in Section 2.4). When M = 1, the macro loss function 
exhibits many local minima. This indicates that the resulting trained RNN may produce accurate forecasts for a 
particular set of initial conditions, but does not generalize well to other points on the system attractor. Evaluating 
forecasts from a greater number of initial conditions results in a smoother loss function landscape. However, 
increasing M also carries a corresponding increase in cost for the evaluation of the macro loss function. We select 
M = 100 to balance the computational cost and the diminishing returns observed beyond this point.

Figure A1.  Normalized macro loss function, 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (see Equation 6) for various M visualized in the (σ, ρ) plane. Increasing 
M regularizes the loss function, revealing an approximate global minimum in parameter space. The loss function shown here 
is based on an 800 dimensional hidden/reservoir state RNN model prediction of the L96-6D system.
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Figure A2.  A free forecast of the RNN model 1 initialized from a random point in the test data set at time 0, compared to the true trajectory. The valid prediction time 
(VPT) using ϵ = 0.2 is marked as a vertical line at about 5.6 MTU.

Figure A3.  Histogram of valid prediction time (VPT) for RNN model 1 forecasts drawn from 100,000 initial conditions in 
the test data set.
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Figure A4.  As in Figure A3, but using RNN model 2. Note the model is skillful, but the mean VPT is reduced compared to 
model 1.

We establish a “Valid Prediction Time” (VPT) as the length of time that the RMSE of any forecast starting at time 
t0 remains below a threshold ϵ. The VPT is defined precisely as,
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Figure A5.  As in Figures A3 and A4, but using RNN Model 3. Due to the computational cost of Model 3, only 1,000 sample 
forecasts are used. The model is still skillful, but the mean VPT is reduced when compared to Models 1 and 2.
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error at time t. An example RNN forecast using RNN model 1 is shown in Figure A2, with the VPT shown using 
ϵ = 0.2. We reiterate that the Bayesian optimization is used to identify parameters that produce the best average 
forecast skill across the training data set. Data assimilation experiments are applied using a separately generated 
test data set. Figures A3 and A4 demonstrate the distribution of prediction skill for Models 1 and 2 initialized 
from 100,000 initial conditions from the test data set. The RMSE is normalized by climatological variability, 
defined as the standard deviation in time of each model variable calculated over the training data set.

Data Availability Statement
No new data were collected for this work. Simulated datasets can be reproduced using the steps and methods 
provided in the manuscript.
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